Search results

Search for "1D nanostructures" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • , Hawthorn, VIC 3122, Australia 10.3762/bjnano.9.202 Abstract Electrospun one-dimensional (1D) nanostructures are rapidly emerging as key enabling components in gas sensing due to their unique electrical, optical, magnetic, thermal, mechanical and chemical properties. 1D nanostructures have found
  • in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of
  • benefits and limitations for every approach. Keywords: 1D nanostructures; conductometric devices; electrospinning; gas sensors; optical sensors; resonators; Review 1 Introduction The monitoring and control of air pollutants, toxic gases and explosives has become increasingly important for human wellness
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • incorporation of graphene is effective to improve the photocatalytic activity of TiO2 because of the increased adsorption capacity and enhanced charge separation [26]. Meanwhile, growing branches on one-dimensional (1D) TiO2 makes full use of the free space on the 1D nanostructures and increases the light
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • properties, despite the relatively large discrepancy in the results, the correlation between the diameter of SiC 1D nanostructures (down to 18 nm) and their Young’s modulus was not found. The Young’s moduli of 18–140 nm diameter SiC nanowires were determined to be in the range of 275–750 GPa [138][139
PDF
Album
Review
Published 25 Jan 2018

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • ] that have advantages over normal structures including a large specific surface area, a high electrolyte–electrode contact area and excellent mass transport of products or reactants to active sites inside meso- or micropores. One-dimensional (1D) nanostructures such as nanofibers, nanotubes, nanowires
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

  • Adrien Chauvin,
  • Cyril Delacôte,
  • Mohammed Boujtita,
  • Benoit Angleraud,
  • Junjun Ding,
  • Chang-Hwan Choi,
  • Pierre-Yves Tessier and
  • Abdel-Aziz El Mel

Beilstein J. Nanotechnol. 2016, 7, 1361–1367, doi:10.3762/bjnano.7.127

Graphical Abstract
  • fields including microelectronics, optics, biotechnology and protective coatings [2]. In the last few years, PVD started to be used for the growth of one-dimensional (1D) nanostructures such as nanowires [3], nanorods [4] and nanosprings [5]. Although such approaches are very practical, controlling the
  • growth of the material to obtain 1D nanostructures with a hierarchical structuring stays very challenging. In thin film deposition processes, the surface of the substrate is a key point to control the growth of thin films. Indeed, since the surface of the substrate is the starting point for film growth
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2016

Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

  • Majid K. Abyaneh,
  • Pietro Parisse and
  • Loredana Casalis

Beilstein J. Nanotechnol. 2016, 7, 809–816, doi:10.3762/bjnano.7.72

Graphical Abstract
  • -dimensional (1D) nanostructures and have attracted many researchers and scientists. GNRs exhibit strong tunable plasmonic fields and are biocompatibile, which makes them promising candidates for various applications [1][2]. In many applications, it is necessary to form and distribute 1D nanostructures on a
  • nanowires (NWs) occurs directly on the surfaces using small metal nanoparticles as seeds to grow the NRs, similar to the direct growth of carbon nanotubes and semiconductor 1D nanostructures from catalytic seeds [5]. Direct growth of GNRs on surfaces has been reported in many publications [6][7][8]. Au seed
  • particles usually bond to the pre-functionalised surfaces using various chemical linkers [9][10]. The substrate is then immersed in a growth solution, which results in the growth of surface-bound seeds into 1D nanostructures, quite similar to seed-mediated growth in solution. Seed-mediated growth is one of
PDF
Album
Full Research Paper
Published 06 Jun 2016

The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes

  • Abdel-Aziz El Mel,
  • Ryusuke Nakamura and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 1348–1361, doi:10.3762/bjnano.6.139

Graphical Abstract
  • provide additional elements for a better comprehension of the hollowing process since the vacancy confinement in 1D nanostructures differs from the case of nanospheres. Another perspective is the possibility of monitoring the oxidation-induced hollowing process using in situ TEM carried out under
PDF
Album
Review
Published 18 Jun 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • titanate 1D nanostructures such as nanotubes [9][12], nanowires [13], nanofibers or nanoribbons [12] (NR) morphologies can be obtained. Transformations from the layered titanate structure to TiO2-B and then to the anatase structure (H2Ti3O7 → TiO2-B → anatase) are considered to be topotactic reactions [14
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • as compared to the bulk material. Concerning 1D nanostructures, additional effects, especially with regards to magnetic anisotropy, are expected, related to their anisotropic shape [1][19][20]. Since metallic substrates are known to strongly influence the magnetic properties of the supported
  • , no reliable atomic structural model for the Si NRs has been proposed. Self-organized growth of Co dimer nanolines on Si/Ag(110) Recent studies have shown that Si NRs grown on Ag(110) can be used as a template for the formation at RT of 1D nanostructures composed of transition metals such as Co [21
  • first step of the silicide formation, was found to be partially hindered at RT in both systems. This gives rise to the formation of 1D nanostructures, reproducing the 1D pattern of the Si/Ag(110) template. First, we reference the results already obtained in our group concerning Co adsorption at RT [21
PDF
Album
Full Research Paper
Published 19 Mar 2015

Filling of carbon nanotubes and nanofibres

  • Reece D. Gately and
  • Marc in het Panhuis

Beilstein J. Nanotechnol. 2015, 6, 508–516, doi:10.3762/bjnano.6.53

Graphical Abstract
  • filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications. Keywords: applications; carbon nanostructures; filling; nanofibers; nanotubes; Introduction Carbon nanotubes are well-known, 1D nanostructures, which are comprised of
PDF
Album
Review
Published 19 Feb 2015

Room temperature, ppb-level NO2 gas sensing of multiple-networked ZnSe nanowire sensors under UV illumination

  • Sunghoon Park,
  • Soohyun Kim,
  • Wan In Lee,
  • Kyoung-Kook Kim and
  • Chongmu Lee

Beilstein J. Nanotechnol. 2014, 5, 1836–1841, doi:10.3762/bjnano.5.194

Graphical Abstract
  • image of the ZnSe, 1D nanostructures. The 1D nanostructures exhibited a wire- or fiber-like morphology with widths ranging from 30 to 100 nm and lengths ranging up to ≈300 μm. Figure 1b shows the corresponding XRD pattern of the ZnSe nanowires. The XRD pattern of the ZnSe nanowires showed six sharp
  • the response of the nanosensor to NO2 gas. Table 1 compares the responses of the ZnSe nanowires towards NO2 synthesized in this study with those of metal oxide semiconductor, 1D nanostructures reported in the literature. The response of the ZnSe nanowires to NO2 gas with a lower concentration obtained
  • at room temperature in the dark in this study was stronger than or comparable to those of typical metal oxide, 1D nanostructures, such as ZnO, SnO2, In2O3, and MoO3 at higher temperatures and higher NO2 concentrations [25][26][27][28][29][30]. This suggests that the ZnSe nanowires are also a
PDF
Album
Full Research Paper
Published 22 Oct 2014

Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

  • Jinzhang Liu,
  • Marco Notarianni,
  • Llew Rintoul and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 485–493, doi:10.3762/bjnano.5.56

Graphical Abstract
  • synthesis methods and applications. ZnO is a multifunctional material with semiconducting, photonic, and piezoelectric properties. Potential applications of ZnO 1D nanostructures include gas sensor [1], transistor [2], light-emitting device [3], optical waveguide [4], nanolaser [5], and piezoelectric power
  • generator [6], etc. Since the first report of ZnO nanobelts in 2001 [7], methods for growing ZnO 1D nanostructures have been well developed, including high-temperature vapour-phase growth [8], low-temperature aqueous solution growth [9], and electrochemical deposition [10]. The aqueous solution growth is
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2014

Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Grzegorz Luka,
  • Lukasz Wachnicki,
  • Sylwia Gieraltowska,
  • Krzysztof Kopalko,
  • Eunika Zielony,
  • Piotr Bieganski,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2014, 5, 173–179, doi:10.3762/bjnano.5.17

Graphical Abstract
  • of 10−4 Ω·cm and a high transparency [22][23]. Due to these properties and the low costs of ZnO and deposition methods, ZnO:Al films may be used in PV structures as a replacement for expensive ITO layers [24][25][26]. One-dimensional (1D) nanostructures such as nanorods attracted a lot of attention
PDF
Album
Full Research Paper
Published 14 Feb 2014

Highly ordered ultralong magnetic nanowires wrapped in stacked graphene layers

  • Abdel-Aziz El Mel,
  • Jean-Luc Duvail,
  • Eric Gautron,
  • Wei Xu,
  • Chang-Hwan Choi,
  • Benoit Angleraud,
  • Agnès Granier and
  • Pierre-Yves Tessier

Beilstein J. Nanotechnol. 2012, 3, 846–851, doi:10.3762/bjnano.3.95

Graphical Abstract
  • template methods [1][2][3][4][5][6][7][8][9][10][11][12], ferromagnetic nanowires still suffer from their relatively short length, which cannot reach up to the macroscopic scale. In addition, the manipulation of such one-dimensional (1D) nanostructures is often considered as a complicated process and a
PDF
Album
Supp Info
Letter
Published 11 Dec 2012
Other Beilstein-Institut Open Science Activities